Answer: The final velocity of both man and hokey puck will be 0.056 m/s.
Explanation: We are given 2 objects and are undergoing collision. The final velocity of both the objects is same. To calculate the final velocity, we will use the principle of conservation of momentum.
This principle states that when the objects that are colliding makes up a system, then the total momentum will remain constant if no external force is applied on it.
Sum of Initial momentum of two objects = Sum of Final momentum of the two objects
Mathematically,
...(1)
where,
are the mass, initial velocity and final velocity of the first object.
are the mass, initial velocity and final velocity of the second object.
Here, man and hockey puck are moving together after the collision, so their final velocities will be same.

Putting values in equation 1, we get:


The final velocity of man and hockey puck is 0.056 m/s.
Answer : The value of
of this reaction is, 
At equilibrium, [L-malate] > [oxaloacetate]
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = +30 kJ/mol = +30000 J/mol
R = gas constant = 8.314 J/K.mol
T = temperature = 
= equilibrium constant = ?
The given reaction is:




Therefore, the value of
of this reaction is, 
As, the value of
< 1 that means the reaction mixture contains reactants.
At equilibrium, [L-malate] > [oxaloacetate]
Answer:
can only be determined experimentally.
Explanation:
In the early days of inorganic chemistry, the structure of complex ions remained a mystery hence the name ''complex''.
These ions appear to have structures that defied accurate elucidation. However, by diligent laboratory investigation, Alfred Werner was able to accurately determine the structure of cobalt complexes. As a result of this, he is regarded as a pathfinder in coordination chemistry.
Hence, the structure of complex ions can only be determined experimentally.
Mass is never lost or gained in chemical reactions. We say that mass is always conserved. In other words, the total mass of products at the end of the reaction is equal to the total mass of the reactants at the beginning. This is because no atoms are created or destroyed during chemical reactions.
Answer:
0.99mol/L
Explanation:
Molarity ( M) = # of moles of solute / volume of solution (L)
Volume of Solution = 100 mL or 0.1 L
Molarity ( M) = # of moles of solute / volume of solution (L)
Molarity (M) = 0.099 mol / 0.1 L = 0.99mol/ L