Answer:
1.14 atm and 1.139 mol
Explanation:
The <em>total pressure</em> of the container is equal to the <u>sum of the partial pressure of the three gasses</u>:
- P = Poxygen + Pnitrogen + Pcarbon dioxide
- 2.50 atm = 0.52 + 0.84 + Pcarbon dioxide
Now we <u>solve for the pressure of carbon dioxide</u>:
- Pcarbon dioxide = 1.14 atm
To c<u>alculate the number of CO₂ moles </u>we use <em>PV=nRT</em>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 32 °C ⇒ 32 + 273.16 = 305.16 K
1.14 atm * 25.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305.16 K
Answer:

Explanation:
Hello!
In this case, since the standard enthalpy change for a chemical reaction is stood for the enthalpy of reaction, for the given reaction:

We set up the enthalpy of reaction considering the enthalpy of formation of each species in the reaction at the specified phase and the stoichiometric coefficient:

In such a way, by using the NIST database, we find that:

Thus, we plug in the enthalpies of formation to obtain:

Best regards!
Answer:
It is the distance between two compressions or two rarefactions.
Explanation:
The fourth (last) one in 2-8-8-2.
Answer:
an area of exposed rock after a glacier melts away
Explanation:
i took the test