Answer:
eg=linear, mg=linear
Explanation:
First of all, it must be stated that most triatomic molecules are either linear or bent. This depends on the electron geometry of the molecule and the number of bonding groups, multiple bonds and lone pairs present.
CO2 contains four regions of electron density and two bonding groups. For a specie containing two bonding groups, a linear molecular geometry is expected with an angle of 180°.
For a specie having two bonding groups and no lone pairs with multiple bonds, the expected electron geometry is also linear.
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
Answer:
Liquid to Gas
Explanation:
The particles need energy to rise and over come the attractions between them as the liquid gets warmer more particles have sufficient, energy to escape from liquid. eventually even particles in the middle of the liquid form bubbles of gas in the liquid At this point the liquid is boiliing and turning into gas.
(205) 872-9311 call me so I can help you out
Answer : The ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
![\Delta G^o=-RT\times \ln Q\\\\\Delta G^o=-RT\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20Q%5C%5C%5C%5C%5CDelta%20G%5Eo%3D-RT%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
where,
= standard Gibbs free energy = -14.1 kJ/mol
R = gas constant = 8.314 J/K.mol
T = temperature = 
Q = reaction quotient
= concentration inside the cell
= concentration outside the cell
Now put all the given values in the above formula, we get:
![-14.1\times 10^3J/mol =-(8.314J/K.mol)\times (298K)\times \ln (\frac{[A]_{inside}}{[A]_{outside}})](https://tex.z-dn.net/?f=-14.1%5Ctimes%2010%5E3J%2Fmol%20%3D-%288.314J%2FK.mol%29%5Ctimes%20%28298K%29%5Ctimes%20%5Cln%20%28%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%29)
![\frac{[A]_{inside}}{[A]_{outside}}=296.2](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5D_%7Binside%7D%7D%7B%5BA%5D_%7Boutside%7D%7D%3D296.2)
Thus, the ratio of the concentration of substance A inside the cell to the concentration outside is, 296.2