Answer:
Explanation:
will accelerate to the right, because three different 410 N is greater than three different 400 N
Answer:
82.8986 km
Explanation:
Given:
Pressure = 7.00×10⁻¹³ atm
Since , 1 atm = 101325 Pa
So, Pressure = 7.00×10⁻¹³×101325 Pa = 7.09275×10⁻⁸ Pa
Radius = 2.00×10⁻¹⁰ m
Diameter = 4.00×10⁻¹⁰ m (2× Radius)
Temperature = 303 K
The expression for mean free path is:

Boltzmann Constant = 1.38×10⁻²³ J/K
So,

<u>Mean free path = 82.8986×10³ m = 82.8986 km</u>
The final velocity is 0 and the acceleration is gravity. Vf=Vi+at because gravity opposes the motion it will be -g
0=250-gt
gt=250 ....g=10
t=25sec
I associate "Tone" with sound frequencies. Tonic solfa being a music example which is basically, I think, using a certain musical key signature such as C major. In a major scale the sequence of "musical intervals" (ie frequency steps) is key note TONE TONE SEMITONE ... TONE TONE SEMITONE.octave higher than keynote.
So, I'd go for a here.
Answer:
v_{4}= 80.92[m/s] (Heading south)
Explanation:
In order to calculate this problem, we must use the linear moment conservation principle, which tells us that the linear moment is conserved before and after the collision. In this way, we can propose an equation for the solution of the unknown.
ΣPbefore = ΣPafter
where:
P = linear momentum [kg*m/s]
Let's take the southward movement as negative and the northward movement as positive.

where:
m₁ = mass of car 1 = 14650 [kg]
v₁ = velocity of car 1 = 18 [m/s]
m₂ = mass of car 2 = 3825 [kg]
v₂ = velocity of car 2 = 11 [m/s]
v₃ = velocity of car 1 after the collison = 6 [m/s]
v₄ = velocity of car 2 after the collision [m/s]
![-(14650*18)+(3825*11)=(14650*6)-(3825*v_{4})\\v_{4}=80.92[m/s]](https://tex.z-dn.net/?f=-%2814650%2A18%29%2B%283825%2A11%29%3D%2814650%2A6%29-%283825%2Av_%7B4%7D%29%5C%5Cv_%7B4%7D%3D80.92%5Bm%2Fs%5D)