As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
Hello, Ginamuhs2!
The oxidizing agent in 2H2S + 3O2 → 2SO2 + 2H2O is the oxygen.
I hope this helps;)
The graph of the plot of acceleration against force is a straight line graph. Option B
<h3>What is the relationship between force and acceleration?</h3>
From the Newton's second law of motion we can derive that; F = ma
F= mass
a = acceleration.
This implies that the acceleration and the mass of a body has a linear relationship. We could then assert that the force is directly proportional to the acceleration with the mass being the constant in the equation.
As such, the force that is imparted to the body is what determines the acceleration and the both increases or decreases linearly. Thus the graph of the plot of acceleration against force is a straight line graph. Option B
Learn more about acceleration:brainly.com/question/12550364?
#SPJ1
Answer:
The phrase "opposites attract" is true for atoms. The positively charged ion (cation) and the negatively charged ion (anion) are attracted to each other. It is this attraction, created by the transfer of electrons, that forms the ionic bond. The transfer of one electron creates a single bond.
Explanation:The phrase "opposites attract" is true for atoms. The positively charged ion (cation) and the negatively charged ion (anion) are attracted to each other. It is this attraction, created by the transfer of electrons, that forms the ionic bond. The transfer of one electron creates a single bond.
<span>C is the correct answer. Elements in the periodic table are grouped based on having similar properties. For example, the noble gases are all non-reactive and non-metallic. The electronic structure of an atom is the way the electrons are arranged within it, and this affects where they are located in the periodic table. The number of electrons in an element is the same as its group number in the periodic table (with the exception of Group 0).</span>