The correct is this because they said
Answer:
The correct option is: <u>B. 366 torr</u>
Explanation:
Given: <u>On the ground</u>- Initial Volume: V₁ = 8.00 m³, Initial Atmospheric Pressure: P₁= 768 torr;
<u>At 4200 m height</u>- Final Volume: V₂ = 16.80 m³, Final Atmospheric Pressure: P₂ = ?
Amount of gas: n, and Temperature: T = constant
<u>According to the Boyle's Law</u>, for a given amount of gas at constant temperature: P₁ V₁ = P₂ V₂
⇒ P₂ = P₁ V₁ ÷ V₂
⇒ P₂ = [(768 torr) × (8.00 m³)] ÷ (16.80 m³)
⇒ P₂ = 365.71 torr ≈ 366 torr
<u>Therefore, the final air pressure at 4200 m height: P₂ = 366 torr.</u>
Answer: Net force is the summation of all the forces involved or acting on an object.
Explanation: For action and reaction situation it states that the Fa = -Fb. Both forces with equal magnitudes but opposite direction will cancel out each other having a zero net force.
Answer:
solid change directly into a vapor in the process known simply as freezing
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.