The density of metal block in grams per cubic centimeter is 10.70 g/cm³.
Given,
Mass of metal block = 5.16 lb
1 lb = 453.592 g
5.26 lb = 2340.536 g
The volume of metal block = 14 in 3
1 in = 2.5 cm
1 in 3 = 15.625 cm³
14 in 3 = 218.75 cm³
Density is defined as the mass per unit volume of a substance. Or, it is the ratio of mass to the volume of the substance.
As we know,
Density = mass/volume
Or, density = 2340.536 / 218.75
Or, density = 10.70 g/cm³
Therefore, the density of the metal block is 10.70 g/cm³.
To learn more about the density, visit: brainly.com/question/15164682
#SPJ9
A compound is a pure substance composed of two or more different atoms chemically bonded to one another. A compound can be destroyed by chemical means. It might be broken down into simpler compounds, into its elements or a combination of the two.
Since X is 1 g, therefore O must be 0.1 g. Therefore:
moles O = 0.1 g / (16 g / mol) = 0.00625 mol
We can see that for every 3 moles of O, there are 2 moles
of X, therefore:
moles X = 0.00625 mol O (3 moles X / 2 moles O) =
0.009375 mol
Molar mass X = 1 g / 0.009375 mol
<span>Molar mass X = 106.67 g/mol</span>
The strength of an Arrhenius base determines percentage of ionization of base and the number of OH⁻ ions formed.
Strong base completely ionize in water and gives a lot of hydroxide ions (OH⁻), for example sodium
hydroxide: NaOH(aq) → Na⁺(aq)
+ OH⁻(aq).
Weak base partially ionize in water and gives a few hydroxide ions (OH⁻), for example ammonia: NH₃ + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq).