Answer:
form of rain, snow, hail, dew, or fog that transports sulfur and. nitrogen compounds from the high atmosphere to the ground
M(C2H2O)= 12.0*2 +1.0*2 +16.0 = 42 g/mol is a molar mass for empirical formula.
120.6g/mol/42g/mol ≈ 3
So, empirical formula should be increased 3 times,
and molecular formula is C6H6O3.
Answer is D.
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
Answer:
0.88 g
Explanation:
Using ideal gas equation to calculate the moles of chlorine gas produced as:-

where,
P = pressure of the gas = 805 Torr
V = Volume of the gas = 235 mL = 0.235 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of chlorine gas = ?
Putting values in above equation, we get:

According to the reaction:-

1 mole of chlorine gas is produced when 1 mole of manganese dioxide undergoes reaction.
So,
0.01017 mole of chlorine gas is produced when 0.01017 mole of manganese dioxide undergoes reaction.
Moles of
= 0.01017 moles
Molar mass of
= 86.93685 g/mol
So,

Applying values, we get that:-

<u>0.88 g of
should be added to excess HCl (aq) to obtain 235 mL of
at 25 degrees C and 805 Torr.</u>
This problem could be solved through the Graham’s law of
effusion (also known as law of diffusion). This law states that the ratio of
the effusion rate of the first gas and effusion rate of the second gas is
equivalent to the square root of the ratio of its molar mass. Thus the answer
would be 0.1098.