concave <span>ray diagrams were constructed in order to determine the general location, size, orientation, and type of image formed by concave mirrors. Perhaps you noticed that there is a definite relationship between the image characteristics and the location where an object placed in front of a concave mirror. but, convex</span><span>ray diagrams were constructed in order to determine the location, size, orientation, and type of image formed by concave mirrors. The ray diagram constructed earlier for a convex mirror revealed that the image of the object was virtual, upright, reduced in size and located behind the mirror. </span>
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Add 35 to 215. then divide by 25. you should get x=10
Answer:
Mechanical would have been conserved if only the force of gravity (the weight of the object does work on the system). The tension force does work also on the system but negative work instead. The net force acting of the system is zero since the upward tension in the string suspending the object is equal to the weight of the object but acting in the opposite direction. As a result they cancel out. In the equation above the effect of the tension force on the object has been neglected or not taken into consideration. For the mechanical energy E to be conserved, the work done by this tension force must be included into the equation. Otherwise it would seem as though energy has been generated in some manner that is equal in magnitude to the work done by the tension force.
The conserved form of the equation is given by
E = K + Ug + Wother.
In this case Wother = work done by the tension force.
In that form the total mechanical energy is conserved.