1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
3 years ago
8

An example of potential energy is a ball sitting _____ of the stairs.

Physics
1 answer:
expeople1 [14]3 years ago
3 0

Answer:

at the top

Explanation:

Potential energy is the stored energy, mechanical energy,

or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.

You might be interested in
Compared to all other forms of energy, wind power is most similar to tidal wave power because _____.
SOVA2 [1]
It is because they are both renewable sources of energy
5 0
3 years ago
Read 2 more answers
Why is space black if the sun is shining
faltersainse [42]

Answer:One star can't light up a whole universe

Explanation:It is like saying one light can feel up the whole town which it can't  do.

5 0
3 years ago
A 65-kg woman in an elevator is accelerating upward at a rate of 0.6 m/s2. The gravitational force is ___ N?
Nastasia [14]

Answer:

The gravitational force is 130.

Explanation:

During this problem you have to multiply the 65 and the 0.6.

5 0
3 years ago
Calculate the de Broglie wavelength of: a) A person running across the room (assume 180 kg at 1 m/s) b) A 5.0 MeV proton
solmaris [256]

Answer:

a

\lambda = 3.68 *10^{-36} \  m

b

\lambda_p = 1.28*10^{-14} \ m

Explanation:

From the question we are told that

   The mass of the person is  m =  180 \  kg

    The speed of the person is  v  =  1 \  m/s

    The energy of the proton is  E_ p =  5 MeV = 5 *10^{6} eV  = 5.0 *10^6 * 1.60 *10^{-19} = 8.0 *10^{-13} \  J

Generally the de Broglie wavelength is mathematically represented as

      \lambda = \frac{h}{m * v }

Here  h is the Planck constant with the value

      h = 6.62607015 * 10^{-34} J \cdot s

So  

     \lambda = \frac{6.62607015 * 10^{-34}}{ 180  * 1  }

=> \lambda = 3.68 *10^{-36} \  m

Generally the energy of the proton is mathematically represented as

         E_p =  \frac{1}{2}  *   m_p  *  v^2_p

Here m_p  is the mass of proton with value  m_p  =  1.67 *10^{-27} \  kg

=>     8.0*10^{-13} =  \frac{1}{2}  *   1.67 *10^{-27}  *  v^2

=>   v _p= \sqrt{\frac{8.0 *10^{-13}}{ 0.5 * 1.67 *10^{-27}} }

=>   v = 3.09529 *10^{7} \  m/s

So

        \lambda_p = \frac{h}{m_p * v_p }

so    \lambda_p = \frac{6.62607015 * 10^{-34}}{1.67 *10^{-27} * 3.09529 *10^{7} }

=>     \lambda_p = 1.28*10^{-14} \ m

     

5 0
3 years ago
A runner is moving at a constant speed of 8.00 m/s around a circular track. If the distance from the runner to the center of the
Genrish500 [490]

Answer: Last option

2.27 m/s2

Explanation:

As the runner is running at a constant speed then the only acceleration present in the movement is the centripetal acceleration.

If we call a_c to the centripetal acceleration then, by definition

a_c =w^2r = \frac{v^2}{r}

in this case we know the speed of the runner

v =8.00\ m/s

The radius "r" will be the distance from the runner to the center of the track

r = 28.2\ m

a_c = \frac{8^2}{28.2}\ m/s^2

a_c = 2.27\ m/s^2

The answer is the last option

3 0
3 years ago
Other questions:
  • You lower a 2.50 kg textbook (remember when textbooks used to be made out of paper instead of being digital?) from a height of 1
    5·1 answer
  • Which one of the following is an example of a weak acid?
    6·2 answers
  • Two point charges of equal magnitude (and opposite sign) are 7.5 cm apart. At the midpoint of the line connecting them, their co
    9·1 answer
  • Pls help I will give brainlist and don’t give me a link I can’t open them
    8·1 answer
  • It is cold and dry outside. You go down the slide and experience a small electric shock. What charge must you and slide be in or
    11·2 answers
  • A child pulls a sled by a rope across the lawn at a constant speed. Of the forces listed, identify which act upon the sled.
    8·1 answer
  • You have learned how to create an effective study space in this learning path.
    10·1 answer
  • After walking across a carpeted floor in socks, Jim brings his finger near a metal doorknob and receives a shock. This demonstra
    5·1 answer
  • The equilibrant of a 40-N force acting on an object to the right and a 30-N force acting on the object to the left is ____ .
    8·1 answer
  • Example of a balanced force
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!