Explanation:
No of mass = no of moles × molar mass
=2.55 × 18 g
= 45.9 g
Answer:
Final volume=V₂ = 216.3 mL
Explanation:
Given data:
Initial volume = 120.0 mL
Initial temperature = -12.3 °C (-12.3 +273 = 260.7 K)
Final volume = ?
Final temperature = 197.0 °C (197+273 = 470 K)
Solution:
We will apply Charles Law to solve the problem.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 120 mL × 470 K /260.7K
V₂ = 56400 mL.K /260.7K
V₂ = 216.3 mL
Answer: 0.52849 j /g °C
Explanation:
Given the following :
Mass of metal = 36g
Δ Temperature of metal = (28.4 - 99)°C = - 70.6°C
Mass of water = 70g
Δ in temperature of water = (28.4 - 24.0) = 4.4°C
Heat lost by metal = (heat gained by water + heat gained by calorimeter)
Quantity of heat(q) = mcΔT
Where; m = mass of object ; c = specific heat capacity of object
Heat lost by metal:
- (36 × c × - 70.6) = 2541.6c - - - - (1)
Heta gained by water and calorimeter :
(70 × 4.184 × 4.4) + (12.4 × 4.4) = 1288.672 + 54.56 = 1343.232 - - - - (2)
Equating (1) and (2)
2541.6c = 1343.232
c = 1343.232 / 2541.6
c = 0.52849 j /g °C
If you are talking about chemistry, it's coefficient!
Answer:
a, b
Explanation:
Electrolytes dissociate to make ions, because of it they conduct electricity.