Explanation:
It's possible that before the Big Bang, the universe was an infinite stretch of an ultrahot, dense material, persisting in a steady state until, for some reason, the Big Bang occured. This extra-dense universe may have been governed by quantum mechanics, the physics of the extremely small scale, Carroll said.
Answer: Mercury-194 is an unstable isotope and hence is radioactive.
Explanation: Mercury-194 is an isotope of mercury, having formula 
Number of protons in this isotope = 80
Number of neutrons in this isotope = 114
This isotope is radioactive in nature and under decay process by Electron Capture.
Electron capture reactions are the reactions in which a proton in a nucleus absorbs an electron and convert it into neutron. The resulting nucleus will have a decreased atomic number and same atomic mass.
Reaction for electron capture of mercury-194 follows:

B. Isotopes have different numbers of neutrons but the same number of protons.
Answer:
B. adding heat to the system and having the system do work on the surroundings
Explanation:
The internal energy of a system is the energy contained within the system. From first law of thermodynamics we have the equation : dq=du+dw
and we know that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another therefore du is zero. dq = dw this means that the entire heat supplied is converted into work (on the surroundings)
However, some of the heat supplied is also used to increase the internal energy of the system
Broadly speaking, a pathogen is a microbe that causes disease. So the most accurate answer here would be the last answer choice.