One mole of Fe(NO3)3, or iron(III) nitrate, has three moles of nitrate molecules, which have three moles of oxygen atoms each. We can show this mathematically:
1 mole Fe(NO3)3 * (3 moles NO3)/(1 mole Fe(NO3)3) = 3 moles NO3
3 moles NO3 * (3 moles Oxygen)/(1 mole NO3) = 9 moles Oxygen
9 moles of Oxygen in one mole Fe(NO3)3
Fractional distillation is used for the refining of crude petroleum.
<h3>How are the components of
crude petroleum separated out?</h3>
Fractional distillation is the procedure used to separate crude oil's numerous constituents.
- A mixture is divided into several components, known as fractions, using fractional distillation.
- A combination of hydrocarbons makes up crude oil. The crude oil evaporates, and in the fractionating column, its vapors condense at various temperatures.
- The hydrocarbon molecules in each percent have a comparable number of carbon atoms and a comparable range of boiling points.
- The mixture is placed above a tall fractionating column that has multiple condensers coming off at various heights.
- The bottom of the column is warm, while the top is cool. High boiling point compounds condense at the bottom, whereas low boiling point substances condense as they ascend.
Learn more about fractional distillation here:
brainly.com/question/15187318
#SPJ4
Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
The paths in which electrons travel are called orbitals.