Answer:
Explanation:
we know that specific heat is the amount of heat required to raise the temperature of substance by one degree mathmeticaly
Q=mcΔT
ΔT=T2-T1
ΔT=26.8-10.2=16.6
C for water is 4.184
therefore
Q=1.00*4.184*16.6
Q=69.4 j
now we have to covert joule into calorie
1 calorie =4.2 j
x calorie=69.4 j/2
so 69.4 j =34.7 calorie thats why 34.7 calorie heat is required to raise the temperature of water from 10.2 to 26.8 degree celsius
Answer:
0.057 M
Explanation:
Step 1: Given data
Solubility product constant (Ksp) for HgBr₂: 2.8 × 10⁻⁴
Concentration of mercury (II) ion: 0.085 M
Step 2: Write the reaction for the solution of HgBr₂
HgBr₂(s) ⇄ Hg²⁺(aq) + 2 Br⁻
Step 3: Calculate the bromide concentration needed for a precipitate to occur
The Ksp is:
Ksp = 2.8 × 10⁻⁴ = [Hg²⁺] × [Br⁻]²
[Br⁻] = √(2.8 × 10⁻⁴/0.085) = 0.057 M
Answer:
The amount of Chlorodecane in the unknown is 0.105nmols
Explanation:
a) Since the GC is in an isothermal state, Chlorohexane C6H13Cl (1.69 nmols) because of its lower boiling point will elute first and Chlorodecane C12H21Cl will elute second.
The area of the first peak corresponding to Chlorohexane is 32434 units.
The area of the second peak corresponding to chlorodecane is 2022 units.
Since the response factor of the compound is not given in question and considering the response factor is same for both the compounds, the answer will be as follow:
1.69 nmols of Chlorohexane gives 32434 units
How much of chlorodecane gives 2022 units
By cross multiplication;
Moles of Chlorodecane = 2022*1.69/32434
=0.105nmols