Sulfur is an element in the periodic table that has a chemical symbol of S. This element is the 16th element in periodic table. This means that the atomic number or number of protons in the nucleus of the atom is equal to 16.
The number following the name of the element is the mass number. The following are the complete symbol that are arranged as follows:
chemical symbol - atomic number - mass number
*Sulfur-32
S - 16 - 32
*Sulfur-33
S - 16 - 33
*Sulfur-34
S - 16 - 34
Answer:The formulas of ionic compounds are:
a)
b)
c)
d)
Explanation:
Formulas for the an ionic compounds is determine by:
Criss-cross method, the oxidation state of the ions gets exchanged and they form the subscripts of the other ions. This results in the formation of a neutral compound.
(a) Copper bromide :Given that it contains
ion.

(b) Manganese oxide : Given that it contains
ion.

(c)Mercury iodide :Given that it contains 

(d) Magnesium phosphate :Given that it contains 

The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Answer:
Kc for this reaction is 0.06825
Explanation:
Step 1: Data given
Number of moles formaldehyde CH2O = 0.055 moles
Volume = 500 mL = 0.500 L
At equilibrium, the CH2O(g) concentration = 0.051 mol
Step 2: The balanced equation
CH2O <=> H2 + CO
Step 3: Calculate the initial concentrations
Concentration = moles / volume
[CH2O] = 0.055 moles . 0.500 L
[CH2O] = 0.11 M
[H2] = 0M
[CO] = 0M
Step 4: The concentration at the equilibrium
[CH2O] = 0.11 - X M = 0.051 M
[H2] = XM
[CO] = XM
[CH2O] = 0.11 - X M = 0.051 M
X = 0.11 - 0.051 = 0.059
[H2] = XM = 0.059 M
[CO] = XM = 0.059 M
Step 5: Calculate Kc
Kc = [H2][CO]/[CHO]
Kc = (0.059 * 0.059) / 0.051
Kc = 0.06825
Kc for this reaction is 0.06825
Spontaneous at low temperatures.