Answer:
The reasons why the seemingly floating bubbles disappear was that they tend to loss their latent heat to the water molecules at the surface water.
Explanation:
Heat energy has a considerable effect on the velocity of molecules including water. The water molecules below the container will receive much more heat energy than those above it. This heat energy in the form of specific heat capacity and latent heat that result in the increase in the speed of individual molecules of water and finally to the escape of the molecules to a colder region of the container, in this case the upper region. At the collision of the bottom water to the surface water, they tend to exchange their heat content, the hotter molecules will lose their heat to the cold ones. When the formerly hot molecules encounter this, it will result in lowering the temperature and consequentially to the reduction of their movement, once in the form of bubble, now become ordinary water. This convectional transfer of heat energy will continue until the whole system has a uniform temperature depending on the consistency of the heat source.
Answer:
k = -0.006.
T₀ = 15 °C
Explanation:
Hola.
En este caso, considerando la gráfica mostrada en el archivo adjunto, podemos evidenciar que los datos dados se comportan de manera lineal, por lo que basado en la ecuación, T=k*h+To, podemos calcular la pendiente que basicamente es igual a k, tomando dos puntos en la gráfica:

Además, el valor de la temperatura inicial se puede extraer de la tabla, dado que esta es cuando la altura es 0 m, es decir 15 °C.
¡Saludos!
A. True.
Very true. The quicker or slower the reactants are used up the faster or slower the rate of reaction, and the faster or slower the products are formed, the faster or slower the rate of reaction.
Answer:
C
Explanation: a is incorrect since the lower the ph = more acidic and b is incorrect because it produces hydronium ion and d I’m not sure what it is but I no that base recieve the protons