That formula would be HNO2
Answer:
<h3>electrical energy is the energy of Kinetic energy </h3>
Explanation:
<h3>I hope l helped you.</h3>
Answer:
9.430 * 10¹⁷ protons per second whill shine on the book from a 62 W bulb
Explanation:
To answer this question, first let's calculate the energy of a single photon with a wavelength (λ) of 504 nm:
E = hc/λ
Where h is Planck's constant (6.626*10⁻³⁴ J·s) and c is the speed of light (3*10⁸ m/s).
E = 6.626*10⁻³⁴ J·s * 3*10⁸ m/s ÷ (504*10⁻⁹m) = 3.944 * 10⁻¹⁹ J.
So now we can make the equivalency for this problem, that
<u>1 proton = 3.944 * 10⁻¹⁹ J</u>
Now we convert watts from J/s to proton/s:
1
= 1 W
Solving the problem, a 62 W bulb converts 5% of its output into light, so:
3.1 watts are equal to [ 2.535*10¹⁸ proton/s * 3.1 ] = 7.858 * 10¹⁸ proton/s
Of those protons per second, 12% will shine on the chemistry textbook, thus:
7.858 * 10¹⁸ proton/s * 12/100 = 9.430 * 10¹⁷ protons/s
Answer: The hydroxide concentration of this sample is 
Explanation:
When an expression is formed by taking the product of concentration of ions raised to the power of their stoichiometric coefficients in the solution of a salt is known as ionic product.
The ionic product for water is written as:
![K_w=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
![7.7\times 10^{-14}=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=7.7%5Ctimes%2010%5E%7B-14%7D%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
As ![[H^+]=[OH^-]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BOH%5E-%5D)
![2[OH^-]=7.7\times 10^{-14}](https://tex.z-dn.net/?f=2%5BOH%5E-%5D%3D7.7%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=3.85\times 10^{-7}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.85%5Ctimes%2010%5E%7B-7%7D)
Thus hydroxide concentration of this sample is 
Answer: Option (c) is the correct answer.
Explanation:
The given reaction is as follows.

Number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance the given equation, we multiply Fe by 2 and
by 3 on the reactant side. Therefore, the balanced chemical equation will be as follows.

Thus, the coefficient of
is 3.