Answer:

Explanation:
Hello,
In this case, for the given reactants we identify the following chemical reaction:

Thus, we evidence a 1:1 molar ratio between KOH and HCl, therefore, for the complete neutralization we have equal number of moles, that in terms of molarities and volumes become:

Hence, we compute the volume of HCl as shown below:

Best regards.
Answer : The new pressure if the volume changes to 560.0 mL is, 280 mmHg
Explanation :
According to the Boyle's, law, the pressure of the gas is inversely proportional to the volume of gas at constant temperature and moles of gas.

or,

where,
= initial pressure = 560.00 mmHg
= final pressure = ?
= initial volume = 280 mL
= final volume = 560.0 mL
Now put all the given values in the above formula, we get:


Therefore, the new pressure if the volume changes to 560.0 mL is, 280 mmHg
B. Because there are 3 molecules in right and 2 molecules in the left, so entropy rises.
First figure out how many grams must freeze and then convert the grams to moles.
<span>Hf = -334 J/g. Convert this to KJ/g by dividing by 1000. (There are 1000 Joules in a kJ). </span>
<span>Hf = -334 J/g ÷ 1000 J/kj = -0.334 kJ/g </span>
<span>Now, divide 100 kJ by -0.334 kJ/g (see how the units are lining up?) </span>
<span>100 kJ ÷ -0.334 kJ/g = 299 g </span>
<span>Now convert this to moles by dividing by the molecular weight of water (18.0g/mole). </span>
<span>299 ÷ 18.0 = 16.6 moles </span>