Answer:
See Explanation
Explanation:

Hence the mass defect is;
[235.04393 + 1.00867] - [ 136.92532 + 96.91095 + 2(1.00867)]
= 236.0526 - 235.85361
= 0.19899 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.19899 amu = 0.19899 * 1.66 * 10^-27 = 3.3 * 10^-28 Kg
Binding energy = Δmc^2
Binding energy = 3.3 * 10^-28 Kg * (3 * 10^8)^2 = 2.97 * 10^-11 J
ii) 
Hence the mass defect is;
[10.01294 + 1.00867] - [7.01600 + 4.00260]
= 11.02161 - 11.0186
= 0.00301 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.00301 amu = 0.00301 * 1.66 * 10^-27 = 4.997 * 10^-30 Kg
Binding energy = Δmc^2
Binding energy = 4.997 * 10^-30 Kg * (3 * 10^8)^2 = 4.5 * 10^-13 J
0.250 mol/L
<em>Step 1</em>. Write the chemical equation
H2SO4 + 2NaOH → Na2SO4 + 2H2O
<em>Step 2</em>. Calculate the moles of H2SO4
Moles of H2SO4 = 12.5 mL H2SO4 × (0.500 mmol H2SO4/1 mL H2SO4)
= 6.25 mmol H2SO4
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 6.25 mmol H2SO4 × (2 mmol NaOH/(1 mmol H2SO4)
= 12.5 mmol NaOH
<em>Step 4</em>. Calculate the concentration of the NaOH
[NaOH] = moles/litres = 12.5 mmol/50.0 mL = 0.250 mol/L
Answer:
3.24 mol/L
Explanation:
Given that:
mass of Boron triiodide = 6664 grams
molar mass of BI_3 = 391.52 g/mol
Recall that:
number of moles = mass/molar mass
∴
number of moles = 6664 g /391.52 g/mol
number of moles = 17.02 mol
Also;
Molarity = moles for solute/liter for solution
= 17.02 mol/5.25 L
= 3.24 mol/L
The equation is:
Ca(OH)₂(s) + 2 HCl(aq) → CaCl₂(aq) + 2 H₂<span>O(l)
</span>
n=mass in g/M.M
15 g Ca(OH)₂ is n=15 g/ 74.1 g/mol=0.2024 mol of Ca(OH)₂
no. of mol of HCl:
n=0.5 mol/L*0.075L=0.0375 mol
This could react with 0.0375/2= 0.01875 mol of Ca(OH)₂ We have a lot more than that.
Therefore, HCl is the limiting reagent and determines how much CaCl₂ forms.
Based on the balanced reaction, 2 moles of HCl gives 1 mole of CaCl₂
no. of mol of CaCl₂= 0.0375/2= 0.01875 mol
mass in g=n*MM= 0.01875*111= 2.08 g
Answer:
The answer is
<h2>4.61 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of stone = 24.595 g
volume = 5.34 cm³
The density of the stone is

We have the final answer as
<h3>4.61 g/cm³</h3>
Hope this helps you