Answer:
The horizontal distance covered by the firework will be 
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:


and 
therefore 
writing equation of motion in horizontal direction:


therefore the equation becomes 
therefore horizontal distance traveled =
Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle
Answer:
15.2 s
Explanation:
Convert hp to W:
55.0 hp × 746 W/hp = 41,030 W
Power = energy / time
41030 W = 6.22×10⁵ J / t
t = 15.2 s
Answer:
yes it doesn't matter
Explanation:
it doesn't matter because troughs and crests are the same and either can be used
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left