1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
3 years ago
5

An oscillator makes 322.1 oscillations in 4.255 minutes. What is the period of the oscillator?

Physics
1 answer:
sergij07 [2.7K]3 years ago
4 0
Ummm I’m not sure let me do the work
You might be interested in
The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1965 kg and car B has a mass of 1
Sunny_sXe [5.5K]

Answer:

U2 = 47.38m/s = initial velocity of B before impact

Explanation:

An example of the diagram is shown in the attached file because of missing angle of direction in the question

Mass A, B are mass of cars

A = 1965

B =1245

U1 = initial velocity of A = 52km/hr

U2 = initial velocity of B

V = common final velocity of two cars

BU2 = (A + B)*V sin ¤ ...eq1 y plane

AU1 = (A + B) *V cos ¤ ....equ 2plane

From equ 2

V = AU1/(A + B)*cos ¤

Substitute V into equation 1

We have

U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°

Substitute all parameters to get

U2 = (1965/1245)*52 * tan 30°

U2 = 47.38m/s

8 0
3 years ago
a wave is described by where x is in meters, y is in centimeters and t is in seconds. The angular frequency is
Sergeeva-Olga [200]

Complete Question

A wave is described by y(x,t) = 0.1 sin(3x + 10t), where x is in meters, y is in centimetres and t is in seconds. The angular wave  frequency is

Answer:

The  value is w =  10 \ rad /s

Explanation:

From the question we are told that  

    The equation describing the wave is y(x,t) = 0.1 sin(3x + 10t)

Generally the sinusoidal equation representing the motion of a wave is mathematically represented as

         y(x,t) =  Asin(kx + wt )

Where  w  is the  angular frequency

Now comparing this equation  with that given we see that

       w =  10 \ rad /s

 

               

7 0
3 years ago
What is the mass of an object if a force of 17 N causes it to accelerate at 1.5 m/s/s?
DochEvi [55]
The answer is m=11.4g
4 0
2 years ago
1. A student lifts a box of books that weighs 185 N. The box is
aksik [14]

1)  148 J

When lifting an object, the work done on the object is equal to its change in gravitational potential energy. Mathematically:

W = \Delta U = (mg) \Delta h

where

mg is the weight of the object

\Delta h is the change in height

For the box in this problem,

mg = 185 N

\Delta h = 0.800 m

Substituting into the equation, we find:

W=(185)(0.800)=148 J

2) (a) 28875 J

The work done by a force applied parallel to the direction of motion of the object is given by

W=Fd

where

F is the magnitude of the force

d is the displacement

In this problem,

F = 825 N is the force applied by the two students together

d = 35 m is the displacement of the car

Substituting,

W=(825)(35)=28875 J

2) (b) 57750 J

As seen previously, the equation that gives the work done by the force is

W=Fd

We see that the work done is proportional to the magnitude of the force: therefore, if the force is doubled, then the work done is also doubled.

The work done previously was

W = 28875 J

Now the force is doubled, so the new work done will be

W' = 2(28875)=57750 J

3) 4.4 J

In this case, the force acting on the ball is the force of gravity, whose magnitude is:

F = mg

where

m = 0.180 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

Solving the equation,

F=(0.180)(9.8)=1.76 N

Now we find the work done by gravity using the same formula applied before:

W=Fd

where d = 2.5 m is the displacement of the ball. We can apply this version of the formula since the force is parallel to the displacement. Substituting,

W=(1.76)(2.5)=4.4 J

4) 595.2 kg

In this case, we have the work done on the box:

W = 7.0 kJ = 7000 J

And we also know the change in height of the box:

\Delta h = 1.2 m

As we stated in part a), the work done on the box is equal to its change in gravitational potential energy:

W=mg \Delta h

Solving for m, we find

m=\frac{W}{g \Delta h}

And substituting the numerical values, we find the mass of the box:

m=\frac{7000}{(9.8)(1.2)}=595.2 kg

5) They do the same work

In fact, the net work done by each person on the box is equal to the change in gravitational potential energy of the box:

W=mg \Delta h

Where \Delta h is the difference in height between the final position and the initial position of the box.

This means that the work done on the box depends only on its initial and final position, not on the path taken. The two men carry the box along different paths, however the reach at the end the same position, and they started from the same position: this means that the value of \Delta h is the same for both of them, so the work they have done is exactly the same.

5 0
3 years ago
In 1990, the Human Genome Project began with the stated goal to ______.
galina1969 [7]
As far as I remember, in 1990, the Human Genome Project began with the stated goal to l<span>ocate the specific genes that cause given diseases.</span>
7 0
4 years ago
Read 2 more answers
Other questions:
  • Which transformation of energy occurs in a hydroelectric power plant? A. Potential to chemical energy B. Chemical to potential e
    10·2 answers
  • Which structure is responsible for breaking down sugar molecules in order to supply energy to the cell? A B C D
    9·1 answer
  • 27. Calculate the impulse when an average<br> force of 10 N acts on a cart for 5.0 s.
    12·1 answer
  • Problem 9.49: Air enters the turbine of a gas turbine at 1200 kPa, 1200 K, and expands to 100 kPa in two stages. Between the sta
    11·1 answer
  • Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 36.5 cm while travelin
    9·1 answer
  • What is the minimum coating thickness (but not zero) that will minimize the reflection at the wavelength of 705 nm where solar c
    10·1 answer
  • If you have a yellow sheet of paper and shine a cyan light what color is the paper
    11·2 answers
  • Can you check this and tell me if I anything wrong
    9·1 answer
  • PLZ HELP
    9·1 answer
  • The diagram below shows a golf ball being struck by a club. The ball leaves the club with a speed of 40 meters per second at an
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!