Answer:
The distance the car traveled during the given time is 94.44 m.
Explanation:
Given;
time of motion t = 8 seconds
initial velocity, u = 15 km/hr = 4.167 m/s
final velocity, v = 70 km/hr = 19.444 m/s
The distance traveled by the car during this time is given by;

Therefore, the distance the car traveled during the given time is 94.44 m.
radio waves bc they have the longest wave lenthgs in a magnetic spectrum
Answer:
If the voltage is increased then the electric field is higher, and electron velocity (average) is proportional to this field. Then you have an increase in speed. And current is total charge passing per time unit, so current is proportional to velocity value of charge (and to voltage in resistors and wire).
Explanation:
Answer:
E = 4.83 N/ C
Explanation:
If we have a uniform charge sphere we can use the following formulas to calculate the Electric field due to the charge of the sphere:
: Formula (1) To calculate the electric field in the region outside the sphere r ≥ a
Where:
K: coulomb constant (N*m²/C²)
a: sphere radius (m)
Q: Total sphere charge (C)
r : Distance from the center of the sphere to the region where the electric field is calculated (m)
Equivalences
1nC=10⁻⁹C
1cm= 10⁻²m
Data
k= 9*10⁹ N*m²/C²
Q=4nC=4 *10⁻⁹C
D = 26 cm = 26*10⁻²m = 0.26m
a = D/2 = 0.13m
r= R+a = 2.6 m+ 0.13m = 2.73m
Problem development
Magnitude of the electric field at r = 2.73m from the center of the sphere
r>a , We apply the Formula (1) :


E= 4.83 N/ C