1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
7

What are used to measure temperature.

Physics
2 answers:
Tatiana [17]3 years ago
7 0
A thermometer everyone knows this
V125BC [204]3 years ago
4 0

Answer:

A thermometer is an instrument that measures temperature.

Explanation:

You might be interested in
Tarzan swings back and forth on a long vine with a period of 7.27 s. how long is the vine?(unit=m)
lana [24]

Answer:

Tarzan, who weighs 688N, swings from a cliff at the end of a convenient vine that is 18m long. From the top of the cliff to the bottom of the swing he descends by 3.2m.

Explanation:

3 0
3 years ago
What does Pascal's Law state? what are the implications of Pascal's law?
dybincka [34]

Answer:

Pascal's Law states that the pressure applied to a fluid in a closed container is transmitted equally to all points in the fluid and act in all directions of the container. ... Therefore, it can rightly be said that since the liquid does not flow, it definitely has equal pressure acting on it at all the points.

Explanation:

plzzzzzzz Mark my answer in brainlist

4 0
3 years ago
A ferry approaches shore, moving north with a speed of 6.2 m/s relative to the dock. A person on the ferry walks from one side o
jasenka [17]

Speed of Ferry is towards North with magnitude 6.2 m/s

Here if we assume that North direction is along Y axis and East is along X axis then we can say

\vec v_f = 6.2 \hat j

Now a person walk on ferry with speed 1.5 m/s towards east with respect to Ferry

so it is given as

\vec v_{pf} = 1.5 \hat i

also by the concept of relative motion we know that

\vec v_{pf} = \vec v_p - \vec v_f

now plug in all values in it

1.5 \hat i = \vec v_p - 6.2 \hat j

\vec v_p = 1.5 \hat i + 6.2 \hat j

now if we need to find the speed of the person then we need to find its magnitude

so it is given as

v = \sqrt{1.5^2 + 6.2^2}

v = 6.37 m/s

7 0
3 years ago
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
3 years ago
A football punter accelerates a .55 kg football
Ronch [10]

Answer:

17.6 N

Explanation:

The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

F=\frac{\Delta p}{\Delta t}

where

\Delta p is the change in momentum of the football

\Delta t=0.25 s is the time elapsed

The change in momentum can be written as

\Delta p = m(v-u)

where

m = 0.55 kg is the mass of the football

u = 0 is the initial  velocity (the ball starts from rest)

v = 8.0 m/s is the final velocity

Combining the two equations and substituting the values, we  find the force exerted on the ball:

F=\frac{m(v-u)}{\Delta t}=\frac{(0.55)(8.0-0)}{0.25}=17.6 N

5 0
3 years ago
Other questions:
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/s2 , and a slug is the mass of an object that wi
    12·1 answer
  • What is the study of the relationships that exist between forces and the motion of objects
    14·1 answer
  • When a hammer exerts a force on a nail, how does the amount of force
    13·1 answer
  • As a car heads down a highway traveling at a speed v away from a ground observer, which of the following statements are true abo
    7·1 answer
  • Consider a traveling wave described by the formula
    8·1 answer
  • How does the tilt of Earth's axis affect how the sun's rays strike Earth?
    11·1 answer
  • Why must you use temperature to specify how hot or cold something is?
    13·2 answers
  • What units should be used when measuring the mass of a ladybug?
    8·1 answer
  • Part one: Multiple choices
    5·1 answer
  • Nama khas matahari adahah?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!