Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
Hey there!
the answer is
C. a tennis racket striking a tennis ball
Thank you
Best regards
OFFICIALLYSAVAGE2003
Newton's three forces, normal, tension and friction, are present in a surprising number of physical situations
Newton's Laws, that describe the relationship between an obejct and the forces acting upon it, apply in almost every physical situation, from quantum mechanics to electricity.
The correct answer is:
Newton’s laws can explain the forces that occur between objects every day
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Hey user
The energy E in joules (J) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C):
E(J) = V(V) ×<span> Q</span>(C)
So
joule = volt × coulomb
or
J = V × C
Example
What is the energy in joules that is consumed in an electrical circuit with voltage supply of 15V and charge flow of 4 coulombs?
E = 15V × 4C = 60J