To solve this problem we will start by defining the length of the shortest stick as 'x'. And the magnitude of the longest stick, according to the statement as

Both cover a magnitude of 8.32 ft, therefore

Now solving for x we have,





Therefore the shorter stick is 2.695ft long.
-- Before he jumps, the mass of (Isaac + boat) = (300 + 62) = 362 kg,
their speed toward the dock is 0.5 m/s, and their linear momentum is
Momentum = (mass) x (speed) = (362kg x 0.5m/s) = <u>181 kg-m/s</u>
<u>relative to the dock</u>. So this is the frame in which we'll need to conserve
momentum after his dramatic leap.
After the jump:
-- Just as Isaac is coiling his muscles and psyching himself up for the jump,
he's still moving at 0.5 m/s toward the dock. A split second later, he has left
the boat, and is flying through the air at a speed of 3 m/s relative to the boat.
That's 3.5 m/s relative to the dock.
His momentum relative to the dock is (62 x 3.5) = 217 kg-m/s toward it.
But there was only 181 kg-m/s total momentum before the jump, and Isaac
took away 217 of it in the direction of the dock. The boat must now provide
(217 - 181) = 36 kg-m/s of momentum in the opposite direction, in order to
keep the total momentum constant.
Without Isaac, the boat's mass is 300 kg, so
(300 x speed) = 36 kg-m/s .
Divide each side by 300: speed = 36/300 = <em>0.12 m/s ,</em> <u>away</u> from the dock.
=======================================
Another way to do it . . . maybe easier . . . in the frame of the boat.
In the frame of the boat, before the jump, Isaac is not moving, so
nobody and nothing has any momentum. The total momentum of
the boat-centered frame is zero, which needs to be conserved.
Isaac jumps out at 3 m/s, giving himself (62 x 3) = 186 kg-m/s of
momentum in the direction <u>toward</u> the dock.
Since 186 kg-m/s in that direction suddenly appeared out of nowhere,
there must be 186 kg-m/s in the other direction too, in order to keep
the total momentum zero.
In the frame of measurements from the boat, the boat itself must start
moving in the direction opposite Isaac's jump, at just the right speed
so that its momentum in that direction is 186 kg-m/s.
The mass of the boat is 300 kg so
(300 x speed) = 186
Divide each side by 300: speed = 186/300 = <em>0.62 m/s</em> <u>away</u> from the jump.
Is this the same answer as I got when I was in the frame of the dock ?
I'm glad you asked. It sure doesn't look like it.
The boat is moving 0.62 m/s away from the jump-off point, and away from
the dock.
To somebody standing on the dock, the whole boat, with its intrepid passenger
and its frame of reference, were initially moving toward the dock at 0.5 m/s.
Start moving backwards away from <u>that</u> at 0.62 m/s, and the person standing
on the dock sees you start to move away <u>from him</u> at 0.12 m/s, and <em><u>that's</u></em> the
same answer that I got earlier, in the frame of reference tied to the dock.
yay !
By the way ... thanks for the 6 points. The warm cloudy water
and crusty green bread are delicious.
Answer:
64.945 miles per hour
Explanation:
Since the frequency of sound heard is higher than actual frequency, the ambulance is moving towards you!
The frequency of sound waves as heard from a distance for a sound wave coming towards one at v₀ m/s and whose real frequency is f₀ is given by
+f = f₀/[1 - (v₀/v)]
+f = frequency of sound as heard from the distance away = 8.61 KHz
f₀ = real frequency of sound = 7.87 KHz
v₀ = velocity at which the sound source is moving towards the reference point = ?
v = velocity of sound waves = 343 m/s
8.61 = 7.87/(1 - (v₀/v))
1 - (v₀/343) = 0.9141
v₀/343 = 1 - 0.9141 = 0.0859
v₀ = 343 × 0.0859 = 29.48 m/s = 64.945 miles per hour
5 second fall starting at 0 m/s
ball strikes ground at a speed = 49 meters per second.
The final velocity of the two pucks is -5 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum.
In fact, in absence of external force, the total momentum of the two pucks before and after the collision must be conserved - so we can write:

where
is the mass of each puck
is the initial velocity of the 1st puck
is the initial velocity of the 2nd puck
v is the final velocity of the two pucks sticking together
Re-arranging the equation and solving for v, we find:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly