Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers.
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

Answer:
Well this is tough. I'm not sure but you are smart and can push through it. YOU DONT need the someone telling you the answer when it is inside you.
hope this helps p
Answer:
The speed the bat is gaining on its prey is 0.03m/s
Explanation:
Given;
speed of the bat, v₀ = 3.7 m/s
frequency of the bat, F₀ = 36 kHz
frequency of the source, Fs = 36.79
This is relative motion between a source of the sound and the observer. The phenomenon is known as Doppler effect.
Apply the following equation to determine the speed of the insect which is the source;
![F_0 = F_s[\frac{v+v_0}{v-v_s} ]\\\\\frac{F_0}{F_s} = [\frac{v+v_0}{v-v_s} ]\\\\\frac{36.79}{36} = \frac{340+3.7}{340-v_s}\\\\1.0219 = \frac{343.7}{340-v_s}\\\\ 340-v_s = \frac{343.7}{1.0219}\\\\340-v_s = 336.33\\\\v_s = 340-336.33\\\\v_s = 3.67 \ m/s](https://tex.z-dn.net/?f=F_0%20%3D%20F_s%5B%5Cfrac%7Bv%2Bv_0%7D%7Bv-v_s%7D%20%5D%5C%5C%5C%5C%5Cfrac%7BF_0%7D%7BF_s%7D%20%3D%20%5B%5Cfrac%7Bv%2Bv_0%7D%7Bv-v_s%7D%20%5D%5C%5C%5C%5C%5Cfrac%7B36.79%7D%7B36%7D%20%3D%20%5Cfrac%7B340%2B3.7%7D%7B340-v_s%7D%5C%5C%5C%5C1.0219%20%3D%20%5Cfrac%7B343.7%7D%7B340-v_s%7D%5C%5C%5C%5C%20%20340-v_s%20%3D%20%5Cfrac%7B343.7%7D%7B1.0219%7D%5C%5C%5C%5C340-v_s%20%3D%20336.33%5C%5C%5C%5Cv_s%20%3D%20340-336.33%5C%5C%5C%5Cv_s%20%3D%203.67%20%5C%20m%2Fs)
The speed the bat is gaining on its prey = 3.7m/s - 3.67m/s = 0.03 m/s
Therefore, the speed the bat is gaining on its prey is 0.03m/s