Answer:
P=4801.5
Explanation:
Given :
work done = W = 100,832 J
time = 21.0 sec
Find:
P = ?
Formula:
P = W/t
Solution:
P = W/t
P = 100,832/21.0
= 4801.52 J/s or Watts
Work done = Force X Distance
3 430 000J = Force X 14m
Force = 3 430 000J / 14m
= 245 000 N
Hope this helps!
Answer: 2.3m/s
Explanation:
mass-energy balance: ke(f) + pe(f) = ke(o) + pe(o)
since we are looking for the point at the bottom of the pendulum, thats the reference point, the lowest in the system. pe(f) is 0, since h
ke(f)=0.5m x v(f)^2
pe(f)=0
ke(o)=0.5m x v(o)^2
pe(o)-mxgxh
find h by: drawing a triangle with the pendulum at the vertical, then displaced by 25 degrees , The difference in height is h, because cos(25)=(adj)/(hyp)=(2-h)/2. I found h=0.187m
In the m-e balance, cancel the masses in all the terms.
.5xv(f)^2 =0.5v(o)^2 +gxh
Given v(o) = 1.2 m/s and g = 9.8 then v(f) = 2.2595 m/s
Therefore V(0) = 2.3 m/s
Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):
