Geological records stretching back millions of years indicate a number of large variations in Earth’s past climate. These have been caused by many natural factors, including changes in the sun, volcanoes, Earth’s orbit and CO2 levels.
However, comprehensive assessment by scientists shows that it is extremely likely that human activity has been the dominant cause of warming since the mid-20th Century.
Acceleration is the rate of change of a the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. However, if we are not given the final velocity, it would not be possible to use the kinematic equations. One possible to calculate this value would be by generating an equation of distance with respect to time and getting the second derivative of the equation.
Answer:
Explanation:
Given
1 ) 140 m west in 45 s .
2 ) 90 m east in 25 s .
a )
distance travelled in first 45 s = 140 m
b ) distance travelled in next 25 s = 90 m
c ) Total distance travelled = 140 m + 90 m
= 230 m
d ) average speed in first 45 s
= distance in 45 s 45
= 140 / 45 = 3.11 m /s
e ) average speed in next 25 s
distance in 25 s / 25
= 90 / 25 = 3.6 m /s
f ) average in entire trip
= total distance / total time
= (140 + 90) / ( 25 + 45 )
= 3.28 m /s
g )
displacement in first 45 s = 140 m towards west
h )
displacement in next 25 s = 90 m towards east
i )
total displacement = 140 - 90
= 50 m towards west .
Answer:
(a) Yes, it is possible by raising the object to a greater height without acceleration.
Explanation:
The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in kinetic energy requires a change in velocity.
If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.
If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).
Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised to a greater height without acceleration.
Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".
Answer: work done = 64,000J or 64KJ.
Explanation:
Work is said to be done if a force applied makes the object to move through a distance in the direction of the applied force. Work is the product of force and perpendicular distance in the direction of the applied force. It is represented by W, measured in Joules(J) and a scalar quantity.
Thus, work done(J)= force(N) × distance(m)
From the the question,
applied force= 1600N
distance=40m
Therefore, work= 1600 × 40
W= 64,000J
But, 1 kilojoules = 1000J
Therefore, 64,000J = 64,000 ÷ 1000
= 64KJ
Work done is 64KJ