Answer:
net force
Explanation:
Net force felt by an object.
Answer:
Resistance to electrical currents
Explanation:
Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.
Insulators have very high resistance and are used to protect us from the flow of electricity.
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as

Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as

=> 
Here the potential energy of the mass is mathematically represented as
![PE = \frac{1}{ 2} * k * [ x ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20x%20%5D%5E2)
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is

So
![PE = \frac{1}{ 2} * k * [ \frac{A}{2} ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20%5Cfrac%7BA%7D%7B2%7D%20%20%5D%5E2)
So
![KE = \frac{1}{2} * k * A^2 - \frac{1}{2} * k * [\frac{A}{2} ]^2](https://tex.z-dn.net/?f=KE%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20A%5E2%20-%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20%5B%5Cfrac%7BA%7D%7B2%7D%20%5D%5E2)
=> 
=> 
So the ratio of
is mathematically represented as

=>