<span>At room temperature and atmospheric pressure, nothing happens when the two gasses are mixed. However, at high temperature and pressure (450C, 200atm), in the presence of an iron oxide catalyst, the production of ammonia is thermodynamically advantageous.</span>
Answer:
1) The Kelvin temperature cannot be negative
2) The Kelvin degree is written as K, not ºK
Explanation:
The temperature of an object can be written using different temperature scales.
The two most important scales are:
- Celsius scale: the Celsius degree is indicated with ºC. It is based on the freezing point of water (placed at 0ºC) and the boiling point of water (100ºC).
- Kelvin scale: the Kelvin is indicated with K. it is based on the concept of "absolute zero" temperature, which is the temperature at which matter stops moving, and it is placed at zero Kelvin (0 K), so this scale cannot have negative temperatures, since 0 K is the lowest possible temperature.
The expression to convert from Celsius degrees to Kelvin is:

Therefore in this problem, since the student reported a temperature of -3.5 ºK, the errors done are:
1) The Kelvin temperature cannot be negative
2) The Kelvin degree is written as K, not ºK
Answer:
Explanation:
To break apart a molecule of H2So4 is much higher than HCl although HCl is an ionic bond it is only bonded to one hydrogen. While H2So4 is bonded to two of them, aswell as its structure being much more complex. The energy to break Ba(h)2 is equal in both.
Explanation:
When chlorine bonds and becomes stable, (had a full outer electron shell), because we know that chlorine has 7 electrons in it’s outer shell, it requires 1 to gain noble gas structure. So, when if bonds with an element and then becomes stable, the gaining of an electron means it becomes a negatively charged ion. (an ion being a charged particle.)