Answer:
in the attached image is the reaction mechanism.
Explanation:
The first reaction (reaction 1) shown in the attached image is the Wolff-Kishner reduction, which is characterized when the carbonyl is reduced to an alkane in the presence of a hydrazine and a base. In reaction 1, the aldehyde reacts with hydrazine to produce oxime. This mechanism begins with the attack of the amine on the carbonyl group. Proton exchange happens and the water leaves the molecule.
In reaction 2, the KOH is deprotoned in nitrogen and organized to form the bond between the nitrogen molecule. this deprotonation releases the nitrogen gas
Answer:
Diffusion is driven by differences in concentration. When chemical substances such as perfume are let loose in a room, their particles mix with the particles of air. Diffusion in gases is quick because the particles in a gas move quickly. It happens even faster in hot gases because the particles of gas move faster.
The Chemistry Regents is one of the four science Regents exams. The other three are Earth Science, Living Environment, and Physics. You'll need to pass at least one of these four exams to graduate high school.
Answer is: mass of the ore is 8.54kg.<span>
</span>ω(Ca₃(PO₄)₂ - calcium phosphate) = 58.6% ÷ 100% = 0.586.
m(P) = 1.00 kg · 1000 g/kg.
m(P) = 1000 g.
In one molecule of calcium phosphate there are two phosphorus atoms:
M(Ca₃(PO₄)₂) = 310.18 g/mol.
M(P) = 30.97 g/mol.
For one kilogram of phosphorus, we need:
M(Ca₃(PO₄)₂) : 2M(P) = m(Ca₃(PO₄)₂) : m(P).
310.18 g/mol : 61.94 g/mol = m(Ca₃(PO₄)₂) : 1000 g.
m(Ca₃(PO₄)₂) = 5007.75 g ÷ 1000 g/kg = 5.007 kg.
Mass of ore find from proportion:
m(Ca₃(PO₄)₂) : m(ore) = 56% : 100%.
m(ore) = 100% · 5.007 kg ÷ 58.6%.
m(ore) = 8.54kg.
Answer:
Torrey's neighbour is incorrect because increase in kinetic energy is proportional to velocity. If the velocity increases so will the object's kinetic energy. Because the mass is constant, if the velocity increases, so does the kinetic energy.