Answer:
The equipments you should have ready to start the crucible experiment includes: safety goggles, crucible with lid, crucible tong, ring support with clay triangle, Bunsen burner and heat resistant tile.
Explanation:
Crucible is an equipment in the laboratory which is suitable for heating a sample to extreme heat over a flame, Modern laboratory crucible are made up of graphite- based composite materials for achievement of higher performance. Because extreme heat is involved, you should locate the correct labware for the experiment, including the equipment to safely handle and support the crucible. These equipments includes:
--> Safety goggles: Because you will work with chemical it is advisable to use a safety goggles which protects the eyes from dangerous floating chemical aerosol.
--> crucible with lid: This is the main apparatus with the lid (cover) which is used to cover the crucible to prevent spilling of the boiling chemical.
--> Crucible tong: These are scissors like tools used to grasp hot crucible.
--> Ring support with clay triangle: the clay triangle is used to hold crucible when they are being heated. They usually sit on a ring stand.
--> Bunsen burner: Produces a single open gas flame which can be used for heating.
With the safety equipments listed above, you can carry out experiment using the crucible. These equipments helps minimise laboratory hazard that may occur should Incase it's not available.
Answer:
chlorine has higher ionization than carbon
Explanation:
Chlorine is only one row below carbon, but it is three columns to the right in this case the IP of chlorine would be predicted to be greater than the IP of carbon.
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1
Answer:
a)
b)
Explanation:
a) The reaction:

The free-energy expression:

![E=E_{red}-E_{ox]](https://tex.z-dn.net/?f=E%3DE_%7Bred%7D-E_%7Box%5D)
The element wich is reduced is the Fe and the one that oxidates is the Mg:

The electrons transfered (n) in this reaction are 2, so:


b) If you have values of enthalpy and enthropy you can calculate the free-energy by:

with T in Kelvin


A chemical formula shows the kinds and numbers of <u>atoms</u> in the smallest representative unit of a substance.
<u>Explanation:</u>
In chemistry, a formula unit is the empirical formula of "ionic or covalent network solid compound" that is used as an independent entity for "stoichiometric calculations". This formula is a representation of a molecule that uses chemical symbols.
The unit is the lowest whole number ratio of ions represented in an ionic compound. It gives the numbers of atoms representing the "smallest representative" unit of a substance. The number of atoms also tells us about the chemical and physical properties of the compound formed.