What is the fate of glucose 6‑phosphate, glycolytic intermediates, and pentose phosphate pathway intermediates in this cell? Gly
colytic intermediates can only enter the pentose phosphate pathway through conversion to pyruvate and subsequent gluconeogenesis. The oxidative pentose phosphate pathway reaction catalyzed by glucose 6‑phosphate dehydrogenase is slowed down. Most of the glucose 6‑phosphate enters the pentose phosphate pathway. One molecule of glyceraldehyde 3‑phosphate and two molecules of fructose 6‑phosphate are used to generate three molecules of ribose 5‑phosphate. Most of the glucose 6‑phosphate enters the glycolytic pathway and is converted to fructose 6‑phosphate and glyceraldehyde 3‑phosphate. Under the given conditions, all triose phosphates are converted to pyruvate by the glycolytic pathway.
The Phosphorylated glucose(glucose +inorganic phosphate), with the energy supplied from ATP hydrolysis formed glucose 6- phosphate, which is later converted to 2 molecules of fructose 6-phosphate- this is phosphorylation.And represented the fate of glucose -6-phosphate.
The fructose 6-phosphate are converted to triose phosphate- which is a 2-molecules of 3C compound. The latter is oxidized by NAD→ NADH+ to form intermediates in the glycolytic pathways .
These intermediates are converted to ribose 5-phosphates in the presence of transketolase and transaldolase enzymes.And they are finally converted to pyruvate in the glycolytic pathway with the production of 2ATPs per molecule of glucose.
Basically the phosphate pathway reaction is very slow due to enzyme catalysis.