The reaction of hydrogen gas (H2) with oxygen gas (O2) is a COMBINATION or SYNTHESIS reaction, because multiple substances combine to form fewer substances. Here, the two gases form one substance, water (H2O):
2H2 + O2 -- > 2H2O
The balanced chemical reaction is written as:
<span>4C(s) + S8(s) → 4CS2(l)
We are given the amount of carbon and sulfur to be used in the reaction. We need to determine first the limiting reactant to be able to solve this correctly.
</span>7.70 g C ( 1 mol / 12.01 g) =0.64 mol C
19.7 g S8 ( 1 mol / 256.48 g) = 0.08 mol S8
The limiting reactant would be S8. We use this amount to calculate.
0.08 mol S8 ( 4 mol CS2 / 1 mol S8 ) ( 256.48 g / 1 mol ) = 78.8 g CS2
Isn't this a math problem?
If it is the the answer should be 102.
10 decimeters=1 meter
27x10=270
270-168=102
Answer : The mole fraction and partial pressure of
and
gases are, 0.267, 0.179, 0.554 and 1.54, 1.03 and 3.20 atm respectively.
Explanation : Given,
Moles of
= 1.79 mole
Moles of
= 1.20 mole
Moles of
= 3.71 mole
Now we have to calculate the mole fraction of
and
gases.
![\text{Mole fraction of }CH_4=\frac{\text{Moles of }CH_4}{\text{Moles of }CH_4+\text{Moles of }CO_2+\text{Moles of }He}](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DCH_4%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7DCH_4%7D%7B%5Ctext%7BMoles%20of%20%7DCH_4%2B%5Ctext%7BMoles%20of%20%7DCO_2%2B%5Ctext%7BMoles%20of%20%7DHe%7D)
![\text{Mole fraction of }CH_4=\frac{1.79}{1.79+1.20+3.71}=0.267](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DCH_4%3D%5Cfrac%7B1.79%7D%7B1.79%2B1.20%2B3.71%7D%3D0.267)
and,
![\text{Mole fraction of }CO_2=\frac{\text{Moles of }CO_2}{\text{Moles of }CH_4+\text{Moles of }CO_2+\text{Moles of }He}](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DCO_2%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7DCO_2%7D%7B%5Ctext%7BMoles%20of%20%7DCH_4%2B%5Ctext%7BMoles%20of%20%7DCO_2%2B%5Ctext%7BMoles%20of%20%7DHe%7D)
![\text{Mole fraction of }CO_2=\frac{1.20}{1.79+1.20+3.71}=0.179](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DCO_2%3D%5Cfrac%7B1.20%7D%7B1.79%2B1.20%2B3.71%7D%3D0.179)
and,
![\text{Mole fraction of }He=\frac{\text{Moles of }He}{\text{Moles of }CH_4+\text{Moles of }CO_2+\text{Moles of }He}](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DHe%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7DHe%7D%7B%5Ctext%7BMoles%20of%20%7DCH_4%2B%5Ctext%7BMoles%20of%20%7DCO_2%2B%5Ctext%7BMoles%20of%20%7DHe%7D)
![\text{Mole fraction of }He=\frac{3.71}{1.79+1.20+3.71}=0.554](https://tex.z-dn.net/?f=%5Ctext%7BMole%20fraction%20of%20%7DHe%3D%5Cfrac%7B3.71%7D%7B1.79%2B1.20%2B3.71%7D%3D0.554)
Thus, the mole fraction of
and
gases are, 0.267, 0.179 and 0.554 respectively.
Now we have to calculate the partial pressure of
and
gases.
According to the Raoult's law,
![p_i=X_i\times p_T](https://tex.z-dn.net/?f=p_i%3DX_i%5Ctimes%20p_T)
where,
= partial pressure of gas
= total pressure of gas = 5.78 atm
= mole fraction of gas
![p_{CH_4}=X_{CH_4}\times p_T](https://tex.z-dn.net/?f=p_%7BCH_4%7D%3DX_%7BCH_4%7D%5Ctimes%20p_T)
![p_{CH_4}=0.267\times 5.78atm=1.54atm](https://tex.z-dn.net/?f=p_%7BCH_4%7D%3D0.267%5Ctimes%205.78atm%3D1.54atm)
and,
![p_{CO_2}=X_{CO_2}\times p_T](https://tex.z-dn.net/?f=p_%7BCO_2%7D%3DX_%7BCO_2%7D%5Ctimes%20p_T)
![p_{CO_2}=0.179\times 5.78atm=1.03atm](https://tex.z-dn.net/?f=p_%7BCO_2%7D%3D0.179%5Ctimes%205.78atm%3D1.03atm)
and,
![p_{He}=X_{He}\times p_T](https://tex.z-dn.net/?f=p_%7BHe%7D%3DX_%7BHe%7D%5Ctimes%20p_T)
![p_{He}=0.554\times 5.78atm=3.20atm](https://tex.z-dn.net/?f=p_%7BHe%7D%3D0.554%5Ctimes%205.78atm%3D3.20atm)
Thus, the partial pressure of
and
gases are, 1.54, 1.03 and 3.20 atm respectively.
Answer:
A. it contains a lot of matter