Answer:
C
Explanation:
Since the solution have an observable color, that means that it absorbs light in the visible region hence it can be determined by colorimetry. Secondly, KMnO4 is a reducing agent which can be titrated against an oxidizing agent and it's concentration accurately determined.
Answer:
2.81 × 10⁶ mm³
2.81 × 10⁻³ m³
Explanation:
Step 1: Given data
Length (l): 250 mm
Width (w): 225 mm
Thickness (t): 50 mm
Step 2: Calculate the volume of the textbook
The book is a cuboid so we can find its volume (V) using the following expression.
V = l × w × t = 250 mm × 225 mm × 50 mm = 2.81 × 10⁶ mm³
Step 3: Convert the volume to cubic meters
We will use the relationship 1 m³ = 10⁹ mm³.
2.81 × 10⁶ mm³ × 1 m³ / 10⁹ mm³ = 2.81 × 10⁻³ m³
Unit of M is also mole/L, where mole is the moles of solute and L is the volume of the solution. The latter is given: 158 mL or 0.158 L. So we need to find out the moles of NH4Br.
Moles of NH4Br = Mass of NH4Br/molar mass of NH4Br = 17.0g/(14+1*4+79.9)g/mol = 0.1736 mole.
So, the molarity of the solution = 0.1736mole/0.158L = 1.10 mole/L = 1.10 M
Answer:
The main difference is their energy level, 2s orbital is higher than 1s orbital.