Answer:
1.22 L of carbon dioxide gas
Explanation:
The reaction that takes place is:
- CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
First we <u>determine which reactant is limiting</u>:
- Calcium carbonate ⇒ 10.0 g CaCO₃ ÷ 100 g/mol = 0.10 mol CaCO₃
- Hydrochloric acid ⇒ 0.100 L * 0.50 M = 0.05 mol HCl
So HCl is the limiting reactant.
Now we calculate the moles of CO₂ produced:
- 0.05 mol HCl * = 0.05 mol CO₂
Finally we use PV=nRT to <u>calculate the volume</u>:
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
1 atm * V = 0.05 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
It's the actual structure of diamond which made the two different. Diamonds have a tetrahedral structure, and as for graphite, it's not structured in that way. The structures of the two is also the reason why diamond is harder than graphite.
Homogeneous Mixture:
<span>It may be mistaken for a pure substance.
</span><span>It can be separated using distillation
</span>
Heterogeneous Mixture:
<span>Its components are visible
</span><span>It can be separated using distillation.
Concrete is an example of this kind of mixture.
</span>
Hope this helps!
First, find the number of moles of UF6
Avagadro's number = 6.023 x 10^23
Number of moles = 8.0 x 10^26 / Avagadro's number = 8.0 x 10^26 / 6.023 x 10^23 = 1.328 x 10³ moles
Molecular weight of UF6 = Molecular weight of U (238.02891) + Molecular weight of F6 (6 x 18.9984032) = 238.02891 + 113.9904192 = 352.0193292 g/mol
Therefore mass of 8.0 x 10^26 UF6 molecules = 352.0193292 g/mol x 1.328 x 10³ moles = 467.481669 x 10³ grams