Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
The coriolis effect is due to the rotation of the earth. Look up youtube videos on it, its pretty cool. If we didn't have coriolis effect then hurricane's wouldn't even form! Also it affects the trajectory of hurricanes. If you look at a path a hurricane takes it always curves quite a bit. That's also because of the coriolis affect. Imagine you're on a merry go round or on some spinning disk. You throw a ball towards the center. The ball will seem to curve away from your target because you're spinning. Now its not because the ball curved and you missed, the ball goes in a straight line but because of the spinning the target you aimed at shifted.
Answer:
3/5 v
Explanation:
The computation of speed will the alpha particle have after the collision is shown below:-
In a perfectly elastic the kinetic energy and collision the momentum are considered.
The velocity of the particles defines the below equation:

As we know that


Here, we consider A is the alpha particle and B is the proton and now by the above values we can solve the equation which is below:-



Therefore the correct answer is 
It will take 13
seconds for the golf ball to hit the ground. The correct answer between
all the choices given is the last choice or letter D. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
No, Alec has not.
The force due to gravity is the same on all objects, regardless of shape and size. The acceleration caused by this force is 9.81 m/s². So if there are two identical pieces of paper, both will experience an equal force of gravity.
The difference in the papers' flight paths is due to the greater air resistance that the flat paper experiences. If the same experiment were to be repeated in a vacuum chamber, both of the pieces of paper would fall at the same rate