Answer:

- Before solving , You'll have to know - When an object starts from the state of rest , in this case , initial velocity ( u ) = 0
- Notice that we're provided the time ( t ) in minutes. So , first thing we have to do is convert the minutes into seconds. It would be - Time ( t ) = 5 minutes = 5 × 60 sec = 300 sec [ 1 min = 60 sec ]
- Here , We're provided - Initial velocity ( u ) = 0 , Final velocity ( v ) = 60 m / s , Time taken ( t ) = 300 seconds & We're asked to find out the acceleration ( a ) & distance covered by the jeep ( s ) .

- Acceleration is defined as the rate of change of velocity. We know :

- Plug the values & then simplify !

- The acceleration of the jeep is 0.2 m/s²


- Plug the values & then simplify !

- The distance covered by the jeep is 9000 m .
❃ The days that break you are the days that make you ! ♪
♡ Hope I helped! ツ
☃ Have a wonderful day / evening ! ☼
# StayInAndExplore ! ☂
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Using waves of frequency and pich
Explanation:
There's always been water around us
The answer is <span>higher than.
</span><span>A sound-producing object is moving toward an observer. The sound the observer hears will have a frequency higher than that actually being produced by the object.
Why?
</span>As the source of the waves is moving toward the observer, each of the successive wave crest<span> is emitted from a position closer to the observer than the previous wave.
Thus each wave takes slightly less time to reach the observer than the previous wave. So, the time between the arrival of successive wave crests at the observer is reduced, increasing the frequency. </span>
Answer:
v = 27 m/s
Explanation:
To find the speed of cars after the collision you take into account the momentum conservation law. Total momentum of both cars before the collision must be equal to the total momentum of both cars after the collision.
After the collision both cars traveled together, then you have:
(1)
m1: mass of the Toyota = 3-ton = 3000 kg
m2: mass of the taxi = 2-ton = 2000kg
v1: speed of the Toyota before the collision = 45m/s
v2: speed of the car before the collision = 0 m/s (it is at rest)
v: speed of both cars after the collision = ?
You solve the equation (1) for v:

Next, you replace the values of the rest of the variables:

hence, just after the collision both cars have a speed of 27m/s
Well, density is mass/volume. So what's 115 g / 16 cm3? That'll get you your density. Remember that density will be in g/cm3!