Answer:
W = 28226.88 N
Explanation:
Given,
Mass of the satellite, m = 5832 Kg
Height of the orbiting satellite from the surface, h = 4.13 x 10⁵ m
The time period of the orbit, T = 1.9 h
= 6840 s
The radius of the planet, R = 4.38 x 10⁶ m
The time period of the satellite is given by the formula
second
Squaring the terms and solving it for 'g'
g = 4 π²
m/s²
Substituting the values in the above equation
g = 4 π²
g = 4.84 m/s²
Therefore, the weight
w = m x g newton
= 5832 Kg x 4.84 m/s²
= 28226.88 N
Hence, the weight of the satellite at the surface, W = 28226.88 N
As the satellite panels extend, the angular velocity decreases due to drag force, and hence it will cause a decrease in the angular momentum of the satellite.
<h3>
What is angular momentum?</h3>
Angular momentum is defined as the quantity of rotation of a body, which is the product of mass, velocity and radius.
L = mvr
L = mωr²
where;
- m is mass of the object
- v is velocity
- r is radius
- ω is angular velocity
As the satellite panels extend, the angular velocity decreases due to drag force, and hence it will cause a decrease in the angular momentum of the satellite.
Learn more about angular momentum here: brainly.com/question/4126751
#SPJ1
Answer:
35.28m/s; 63.50m
Explanation:
<u>Given the following data;</u>
Time, t = 3.6 secs
Since it's a free fall, acceleration due to gravity = 9.8m/s²
Initial velocity, u = 0
To find the final velocity, we would use the first equation of motion;
Substituting into the equation, we have;
V = 35.28m/s
Therefore, the final velocity of the penny is 35.28m/s.
To find the height, we would use the second equation of motion;

Substituting the values into the equation;



S = 63.50m
Therefore, the height of the tower is 63.50m.
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N