The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
Answer: When rubbing a balloon with a wool cloth, it puts negative charges on the balloon. Negative charges attract to positive charges. If a balloon is not rubbed with the wool cloth, it has an equal amount of negative to positive charges, so it will attract to a rubbed balloon.
A group of protons and neutrons surrounded by electrons
Answer:
a) 
b) The second runner will win
c) d = 10.54m
Explanation:
For part (a):

For part (b) we will calculate the amount of time that takes both runners to cross the finish line:


Since it takes less time to the second runner to cross the finish line, we can say the she won the race.
For part (c), we know how much time it takes the second runner to win, so we just need the position of the first runner in that moment:
X1 = V1*t2 = 239.46m Since the finish line was 250m away:
d = 250m - 239.46m = 10.54m