Answer:
LAOD = 6669.86 N
Explanation:
Given data:
width
thickness 
crack length 2c = 0.5 mm at centre of specimen

stress intensity factor = k will be


we know that

[c =0.5/2 = 2.5*10^{-4}]
K = 0.1724 Mpa m^{1/2} for 1000 load
if
then load will be




LAOD = 6669.86 N
Lo siento, no sé qué estás diciendo.
Answer:
a) 
b) 
Explanation:
Previous concepts
The cumulative distribution function (CDF) F(x),"describes the probability that a random variableX with a given probability distribution will be found at a value less than or equal to x".
The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution".
Part a
Let X the random variable of interest. We know on this case that 
And we know the probability denisty function for x given by:

In order to find the cdf we need to do the following integral:

Part b
Assuming that
, then the density function is given by:

And for this case we want this probability:

And evaluating the integral we got:

Answer:
Output signal shape: square, from 0.1 to 230 MHz. Output power: -10 dBm (at a load of 50 Ohms).
Explanation:
Q:What velocity does the boy attain if he throws the bricks one at a time?
Answer:Linear velocity since it moves back and firth and does not rotate like angular velocity.