1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
3 years ago
6

What’s the difference between engineering stress and strain and true stress and strain

Engineering
2 answers:
Nana76 [90]3 years ago
4 0

True strain and engineering strain? True stress is defined as the load divided by the cross-sectional area of the specimen at that instant and is a true indication of the internal pressures. ... Engineering stress is defined as the load divided by the initial cross-sectional area of the specimenAnswer:

Explanation:

svetoff [14.1K]3 years ago
4 0

Answer:

he value of true stress or true strain is calculated from this instantaneous change in cross section area. ... Conversely, since true strain is calculated by integrating the strain over the entire test, it is larger than engineering strain for the same value of displacement.

Explanation:

True strain and engineering strain? True stress is defined as the load divided by the cross-sectional area of the specimen at that instant and is a true indication of the internal pressures. ... Engineering stress is defined as the load divided by the initial cross-sectional area of the specimen.

You might be interested in
Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surro
loris [4]

Answer:

(a)The final temperature of mixture is T₃ =m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp

(b) The final volume is V₃ =V₁ + V₂ + RQin/P₃Cp

(c) The volume flow rate at exit is V₃ =V₁ + V₂

Explanation:

Solution

Now

The system comprises of two inlets and on exit.

Mass flow rate enthalpy of fluid from inlet -1 be m₁ and h₁

Mass flow rate enthalpy of fluid from inlet -2 be m₂ and h₂

Mass flow rate enthalpy of fluid from  exit be m₃ and h₃

Mixing chambers do not include any kind of work (w = 0)

So, both  the kinetic and potential energies of the fluid streams are usually negligible (ke =0, pe =0)

(a) Applying the mass balance of mixing chamber, min = mout

Applying the energy balance of mixing chamber,

Ein = Eout

min hin =mout hout

miCpT₁ + m₂CpT₂ +Qin =m₃CpT₃

T₃ = miCpT₁/m₃CpT₃ + m₂CpT₂/m₃CpT₃ + Qin/m₃CpT₃ +

T₃ =m₁T₁/m₃+ m₂T/m₃ + Qin/m₃Cp

The final temperature of mixture is T₃ =m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp

(b) From the ideal gas equation,

v =RT/PT

v₃ = RT₃/P₃

The volume flow rate at the exit, V₃ =m₃v₃

V₃ = m₃ RT₃/P₃

Substituting the value of T₃, we have

V₃=m₃ R/P₃ (=m₁T₁/m₃+ m₂T₂/m₃ + Qin/m₃Cp)

V₃ =  R/P₃ (m₁T₁+ m₂T₂ + Qin/Cp)

Now

The mixing process occurs at constant pressure P₃=P₂=P₁.

Hence V₃ becomes:

V₃=m₁RT₁/P₁ +m₂RT₂/P₂ + RQin/P₃Cp

V₃ =V₁ + V₂ + RQin/P₃Cp

Therefore, the final volume is V₃ =V₁ + V₂ + RQin/P₃Cp

(c) Now for an adiabatic mixing, Qin =0

Hence V₃ becomes:

V₃ =V₁ + V₂ + r * 0/P₃Cp

V₃ =V₁ + V₂ + 0

V₃ =V₁ + V₂

Therefore the volume flow rate at exit is V₃ =V₁ + V₂

8 0
3 years ago
What are the 2 reasons an alignment should be done?
NikAS [45]

Answer:

because it will keep the tires in much better shape and it can improve the handling and keep your  car from pulling to one side

Explanation:

5 0
3 years ago
A Service Schedule is...
VikaD [51]

Answer:

option c

Explanation:

8 0
3 years ago
Read 2 more answers
Explain the process of energy conversion by describing how energy was converted from the windmill design brief. Discuss the diff
cupoosta [38]

Answer:

Wind energy is converted to Mechanical energy  which is then converted in to  electrical energy

Explanation:

In a wind mill the following energy conversions take place

a) Wind energy is converted into Mechanical energy (rotation of rotor blades)

b) Mechanical energy is converted into electrical energy (by using electric motor)

This electrical energy is then used for transmission through electric lines.

6 0
2 years ago
What is the average linear (seepage) velocity of water in an aquifer with a hydraulic conductivity of 6.9 x 10-4 m/s and porosit
jeka94

Answer:

a. 0.28

Explanation:

Given that

porosity =30%

hydraulic gradient = 0.0014

hydraulic conductivity = 6.9 x 10⁻4 m/s

We know that average linear velocity given as

v=\dfrac{K}{n_e}\dfrac{dh}{dl}

v=\dfrac{6.9\times 10^{-4}}{0.3}\times0.0014\ m/s

v=3.22\times 10^{-6}\ m/s

The velocity in m/d      ( 1 m/s =86400 m/d)

v= 0.27 m/d

So the nearest answer is 'a'.

a. 0.28

4 0
3 years ago
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the centr
    14·1 answer
  • Technician A says that the first step in diagnosing engine condition is to perform a thorough visual inspection. Technician B sa
    8·1 answer
  • Early American rockets used an RC circuit to set the time for the rocket to begin re-entry after launch (true story). Assume the
    5·1 answer
  • A type 3 wind turbine has rated wind speed of 13 m/s. Coefficient of performance of this turbine is 0.3. Calculate the rated pow
    12·1 answer
  • An organization is struggling to differentiate threats from normal traffic and access to systems. A security engineer has been a
    12·1 answer
  • 10. Power = (Distance * Force) / Time
    7·1 answer
  • using the following data for july, calculate the cost of goods manufactured: beginning finished goods inventory 150,475. Ending
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B7x%7D%20%5C%2C%20dx" id="TexFormula1" title="\int\limits^a_b {7x} \
    8·1 answer
  • What does Enter key do?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!