1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
3 years ago
9

A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the

compressor at 95 kPa and 290 K and the turbine at 760 kPa and 1100 K. Heat is transferred to air at a rate of 35,000 kJ/s. Determine the power delivered by this plant (a) assuming constant specific heats at room temperature and (b) accounting for the variation of specific heats with temperature.
Engineering
1 answer:
ololo11 [35]3 years ago
4 0

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

You might be interested in
A furnace uses preheated air to improve its fuel efficiency. Determine the adiabatic flame temperature when the furnance is oper
balu736 [363]

Answer:

2543 k

Explanation:

This problem can be resolved by applying the first law of thermodynamics

<u>Determine the adiabatic flame temperature</u> when the furnace is operating at a mass air-fuel ratio of 16 for air preheated to 600 K

attached below is a detailed solution

cp = 1200

8 0
3 years ago
It is said that Archimedes discovered his principle during a bath while thinking about how he could determine if KingHiero‘s cro
Rudiy27

Answer:

the crown is false densty= 12556kg/m^3[/tex]

Explanation:

Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.

W=mg

W=weight(N)=31.4N

M=Mass

g=gravity=9.81m/S^2

solving for M

m=W/g

m=\frac{31.4N}{9.81m/S^2}=3.2kg

The second step is find the volume of crown  remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

F=mg-\alpha  V g

Where

F=weight in water=28.9N

m=mass of crown=3.2kg

g=gravity=9.81m/S^2

α=density of water=1000kg/m^3

V= crown´s volume

solving for V

V=\frac{mg-F }{g \alpha } =\frac{(3.2)(9.81)-28.9}{9.81(1000)} =0.000254m^3

finally, we remember that the density is equal to the index between mass and volume

\alpha =\frac{m}{v} =\frac{3.2}{0.000254} =12556kg/m^3

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.

1.weigh the crown in the air and find the mass

2. put water in a cylindrical bucket and measure its height with a ruler.

3. Put the crown in the bucket and measure the new water level with a ruler.

4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.

5. find density by dividing mass by volume

7 0
3 years ago
Drivers education - Unit 3
melamori03 [73]

The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.

<h3>What do you do when the car is forced into the guardrail?</h3>

Best response:

  • I'll keep my hands on the wheel and slow down gradually.
  • The reason I keep my hands on the steering wheel is to avoid losing control.
  • This will allow me to slowly back away from the guard rail.
  • The next phase is to gradually return to the fast lane.
  • Slamming on the brakes at this moment would result in a collision with the car behind.

Scenario 2: When driving on a wet road and the car begins to slide

Best response:

  • It is not advised to accelerate.
  • Pumping the brakes is not recommended.
  • Even lightly depressing and holding down the brake pedal is not recommended.
  • The best thing to do is take one foot off the gas pedal.
  • There should be no severe twists at this time.

Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind

Best response:

  • The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
  • This helps to keep the patient in the ambulance alive.
  • It also provide a clear path for the ambulance.
  • Moving to the left is NOT recommended.
  • This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.

Learn more about rules of driving. at;

brainly.com/question/8384066

#SPJ1

4 0
2 years ago
In DC electrode positive, how much power is at the work clamp?
Korolek [52]

Answer:

1/3 power

Explanation:

I'm just a smart guy

7 0
3 years ago
Foundation dampproofing is most commonly installed: Select one: a. on both the inside and outside of the basement wall b. Baseme
puteri [66]

Answer:A

Explanation:

Damp roof is generally applied at basement level which restrict the movement of moisture through walls and floors. Therefore it could be inside or the outside basement walls.

4 0
3 years ago
Other questions:
  • Here u go vagdhf dis day did. Du video ioi Hi I gotta go to do something fun to do something that would you want to me see you l
    15·1 answer
  • A steam pipe passes through a chemical plant, where wind passes in cross-flow over the outside of the pipe. The steam is saturat
    13·1 answer
  • Please read
    6·1 answer
  • Alberto's mom is taking a splinter out of his hand with a pair of tweezers. The tweezers are 3 inches long. She is applying .25
    12·2 answers
  • 8. Explain how a duo-servo brake assembly works to provide great braking ability.
    11·1 answer
  • Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. B
    14·1 answer
  • Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of poun
    9·1 answer
  • Which is the maximum length for any opening on the surface of a 2G SMAW guided bend test specimen?
    11·1 answer
  • 3. What is special about beryllium-copper alloy tools?
    6·2 answers
  • 8th grade safety test
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!