Answer:
answer below:
Explanation:
Before the Industrial Revolution, transportation relied on animals (like horses pulling a cart) and boats. Travel was slow and difficult. It could take months to travel across the United States in the early 1800s before industrial revolution
The Industrial Revolution completely changed the way people traveled and how goods were transported.
the problem of traveling upstream was solved during the industrial revolution by the steam engine. in order to make better use of water transportation, canals were build to connect rivers, lakes and oceans. the invention of the railroad and the steam powered locomotive opened up a whole new world in transportation. even with steamboats and railroads, people still needed a better wat to travel between rivers and train stations. a new process called the "macadam " process was used to create smooth gravel roads
I hope this helps a bit.
The new dimensions of the titanium alloy pin will be that the width is 0.0775 mm and the length is 4.9225m.
<h3>What is Poisson's ratio?</h3>
The Poisson's ratio is the proportion of a material's change in width per unit width to its change in length per unit length due to strain. In order for a stable, isotropic, linear elastic material to have a positive Young's modulus, shear modulus, and bulk modulus, the Poisson's ratio must be between 1.0 and +0.5. Poisson's ratio values for the majority of materials fall between 0.0 and 0.5.
The formula for the longitudinal strain is:
= Change in length / Initial length
Based on the information, the longitudinal strain will be:
= 105 - 100 / 100
= 0.05
Poisson ratio will be illustrated as the change in the width divided by the longitudinal strain. :
0.31 = ∆w/5 / 0.05
∆w = 0.0775 mm
New side length will be the difference in the changes in the dimensions:
= w - ∆w
= 5 - 0.0775
= 4.9225m
Learn more about Poisson on:
brainly.com/question/7879375
#SPJ1
It used for designing homes and drafting products before production
Answer:
(a) 6.91 mm (b) 160 MPa
Explanation:
Solution
Given that:
E = 200 GPa
The rod length = 48 mm
P =P¹ = 6 kN
Recall that,
1 kN = 10^3 N
1 m =10^3 mm
I GPa = 10^9 N/m²
Thus
The rod deformation is stated as follows:
δ = PL/AE-------(1)
σ = P/A----------(2)
Now,
(a) We substitute the values in equation and obtain the following:
48 * 10 ^⁻3 m = (6 * 10³ N) (60 m)/A[ 200 * 10^9 N/m^2]
Thus, we simplify
A = (6 * 10³) (60)/ ( 200 * 10^9) (48 * 10 ^⁻3)m²
A =0.0375 * 10 ^⁻3 m²
A =37.5 mm²
A = π/4 d²
Thus,
d² = 4A /π
After inserting the values we have,
d = √37.5 * 4/3.14 mm
= 6.9116 mm
or d = 6.91 mm
Therefore, the smallest that should be used is 6.91 mm
(B) To determine the corresponding normal stress that is caused by the tensile force, we input the values in equation (2)
Thus,
σ = P/A
σ= 6 * 10 ^ 3 N/ 37. 5 * 10 ^⁻6 m²
σ= 160 MPa
Note: I MPa = 10^6 N/m²
Hence the the corresponding normal stress is σ= 160 MPa