Answer:
Explanation:
Earliest standards were dependent on a single frequency/channel to both send and receive. This shared medium creates the same problem as half-duplex coax cable. Because receivers had to wait for the signal before sending a response, this reduced the overall bandwidth.
Other factors affect wireless signal propagation, too, including RF interference, antenna choice, and obstacles such as walls, trees, and even weather (precipitation, for example).
Answer:
Hope it will help you a lot.
Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Kinetic energy=1/2mv^2
=1/2(142*10^-3)(42.9)^2=130.6=131J
Your answer would be A. You divide 96 by 16 to find the answer