Hey there!
The answer as well as the explanation is in the image attached. Let me know if there's anything you're unable to see.
Hope this helps!
d. Fe(s) and Al(s)
<h3>Further explanation</h3>
In the redox reaction, it is also known
Reducing agents are substances that experience oxidation
Oxidizing agents are substances that experience reduction
The metal activity series is expressed in voltaic series
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The more to the left, the metal is more reactive (easily release electrons) and the stronger reducing agent
The more to the right, the metal is less reactive (harder to release electrons) and the stronger oxidizing agent
So that the metal located on the left can push the metal on the right in the redox reaction
The electrodes which are easier to reduce than hydrogen (H), have E cells = +
The electrodes which are easier to oxidize than hydrogen have a sign E cell = -
So the above metals or metal ions will reduce Pb²⁺ (aq) will be located to the left of the Pb in the voltaic series or which have a more negative E cell value (greater reduction power)
The metal : d. Fe(s) and Al(s)
Answer:
y1 = 0.3162
y2 = 0.6838
Explanation:
ok let us begin,
first we would be defining the parameters;
at 25°C;
1-propanol P1° = 20.90 Torr
2-propanol P2° = 45.2 Torr
From Raoults law:
P(1-propanol) = P⁰ × X(1-propanol)
P(1-propanol) = 20.9 torr × 0.45 = 9.405
P(1-propanol) = 9.405 torr
Also P(2-propanol) = P⁰ × X(2-propanol)
P(2-propanol) = 45.2 torr × 0.45
P(2-propanol) = 20.34 torr
but the total pressure = sum of individual pressures
total pressure = 9.405 + 20.34
total pressure = 29.745 torr
given that y1 and y2 represent the mole fraction of each in the vapor phase
y1 = P1 / total pressure
y1 = 9.405/29.745
y1 = 0.3162
Since y1 + y2 = 1
y2 = 1 - y1
∴ y2 = 1 - 0.3162
y2 = 0.6838
cheers, i hope this helps.
B solvent because it is socking in
Hi thereeeeeeeeeee! salt is ur answer !