To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
Ionic compounds are the combination of two elements, one of which is a metal, while the other is a nonmetal. The intermolecular forces binding them is called an ionic bond. To name an ionic compound, take the name of the metal element first, followed by the nonmetal, but adding the suffix -ide. For example, NaCl is named as sodium chloride.
A circuit breaker must be replaced after too much current flowing through it causing it to melt.
Answer:
105.9888 g/mol
Explanation:
The molar mass of sodium carbonate is 105.9888 g/mol (grams per mole)
Answer: Rutherford.
Explanation:
It was the scientist Ernest Rutherford who, by 1911, performed the gold foil experiment in which α particles were shoot to a thin foild of gold.
That experiment showed that although most α particles passed through the thin gold foild, some of them were deviated in small angles and some other were bounced backward.
The conclusion of the experiment was that the atom contained a small dense positively charged nucleous and negative particles (electrons) surroundiing the nucleous. Being the space in between the nucleous and the electrons empty.
Before Rutherford's experiment the model of the atom was that of the plum pudding presented by J.J Thomson, in which the atom was a solid positively charged sphere with embeded negative charge uniformly distributed in it.