Answer:
Explanation: Speed = Wavelength x Wave Frequency. In this equation, wavelength is measured in meters and frequency is measured in hertz (Hz), .
A) no H30+ ions or OH- ions.
“Don't hand that holier than thou line to me” is what the asymptote
said to the removable discontinuity.
The distance between the
curve and the line where it approaches zero as they tend to infinity is the line in the asymptote
of a curve. This is unusual for modern authors but in some
sources the requirement that the curve may not cross the line infinitely often
is included.
The point that does not fit the rest of the graph or is
undefined is called a removable discontinuity. By filling in a single
point, the removable discontinuity can be made connected.
Answer:

Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.