Answer: 1200kg
Explanation:
KE = (1/2)mv^2
103kJ = 103000J
103000J = (1/2) * m * (13.1m/s)^2
Solve for m
Answer:
a) 46.5º b) 64.4º
Explanation:
To solve this problem we will use the laws of geometric optics
a) For this part we will use the law of reflection that states that the reflected and incident angle are equal
θ = 43.5º
This angle measured from the surface is
θ_r = 90 -43.5
θ_s = 46.5º
b) In this part the law of refraction must be used
n₁ sin θ₁ = n₂. Sin θ₂
sin θ₂ = n₁ / n₂ sin θ₁
The index of air refraction is n₁ = 1
The angle is this equation is measured between the vertical line called normal, if the angles are measured with respect to the surface
θ_s = 90 - θ
θ_s = 90- 43.5
θ_s = 46.5º
sin θ₂ = 1 / 1.68 sin 46.5
sin θ₂ = 0.4318
θ₂ = 25.6º
The angle with respect to the surface is
θ₂_s = 90 - 25.6
θ₂_s = 64.4º
measured in the fourth quadrant
Answer:
The image distance is 20.0 cm.
Explanation:
Given that,
Power = 1.55 dp
Distance between book to eye = 26.0+3.00=29.0 cm
We need to calculate the focal length
Using formula of focal length
Put the value into the formula
We need to calculate the image distance
Using lens formula
Put the value into the formula
Hence, The image distance is 20.0 cm.
Speed = distance/time
Speed = 50/5
Speed = 10m/s
Answer:
The speed of the skier after moving 100 m up the slope are of V= 25.23 m/s.
Explanation:
F= 280 N
m= 80 kg
α= 12º
μ= 0.15
d= 100m
g= 9,8 m/s²
N= m*g*sin(α)
N= 163 Newtons
Fr= μ * N
Fr= 24.45 Newtons
∑F= m*a
a= (280N - 24.5N) / 80kg
a= 3.19 m/s²
d= a * t² / 2
t=√(2*d/a)
t= 7.91 sec
V= a* t
V= 3.19 m/s² * 7.91 s
V= 25.23 m/s