Answer: 45.3°
Explanation:
Given,
Length of ladder = l
Weight of ladder = w
Coefficient of friction = μs = 0.495
Smallest angle the ladder makes = θ
If we assume the forces in the vertical direction to be N1, and the forces in the horizontal direction to be N2, then,
N1 = mg and
N2 = μmg
Moment at a point A in the clockwise direction is
N2 Lsinθ - mg.(L/2).cosθ = 0
μmgLsinθ - mg.(L/2).cosθ = 0
μmgLsinθ = mg.(L/2).cosθ
μsinθ = cosθ/2
sin θ / cos θ = 1 / 2μ
Tan θ = 1 / 2μ
Substituting the value of μ = 0.495, we have
Tan θ = 1 / 2 * 0.495
Tan θ = 1 / 0.99
Tan θ = 1.01
θ = tan^-1(1.01)
θ = 45.3°
This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.
where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,
<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.
where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,
solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
Answer: 1 is phone 2 is sandwich, Last is picture.
Explanation: I hoped That Helped !!
Answer:
50 N.
Explanation:
On top of a horizontal surface, the normal force acting on an object is equivalent to the force of gravity acting on the object. That is:
The mass of the block is 5 kg and the given force due to gravity is 10 N/kg. Substitute and evaluate:
In conclusion, the normal force acting on the block is 50 N.