Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
Answer:
30N*s
Explanation:
Given the following data;
Force = 10N
Time = 3 seconds
To find the impulse;
Impulse = force * time
Substituting into the equation, we have;
Impulse = 10 * 3
Impulse = 30Ns
Answer:
Over such small distances, digital data may be transmitted as direct, two-level electrical signals over simple copper conductors. This results from the electrical distortion of signals traveling through long conductors, and from noise added to the signal as it propagates through a transmission medium.
Yes!
I think there are two ways you could go with this answer:
1) Acceleration is the change in velocity over time, it can be negative or positive. If you have an object that is already moving forwards in a straight line and give it a constant negative acceleration, it will slow down and then start going in reverse.
2)Velocity is a vector, meaning it has both magnitude and direction. In the example above, the acceleration is due to a change in magnitude, or speed (from +ve to -ve) but not a change in direction. Something that has constant speed but is changing direction is also accelerating (like something that is orbiting). You could use the earth as an example, which is constantly accelerating due to moving in a circle around the sun. At any time in the year you can say that in half a year's time the earth's direction will be reversed.