Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°
This question involves the concepts of the law of conservation of energy and kinetic energy.
The girl's fastest speed is "3.7 m/s".
According to the law of conservation of energy, the girl will have the fastest speed at mean position, which will be calculated as follows:
Loss in Potential Energy = Gain in Kinetic Energy

where,
v = maximum speed = ?
g = acceleration due to gravity = 9.81 m/s²
Δh = change in height = 1.3 m - 0.6 m = 0.7 m
Therefore,

<u>v = 3.7 m/s</u>
<u></u>
Learn more about the Law of Conservation of Energy here:
brainly.com/question/381281?referrer=searchResults
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F